Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555327

RESUMO

Poisoning with the organophosphorus nerve agent VX can be life-threatening due to limitations of the standard therapy with atropine and oximes. To date, the underlying pathomechanism of VX affecting the neuromuscular junction has not been fully elucidated structurally. Results of recent studies investigating the effects of VX were obtained from cells of animal origin or immortalized cell lines limiting their translation to humans. To overcome this limitation, motor neurons (MN) of this study were differentiated from in-house feeder- and integration-free-derived human-induced pluripotent stem cells (hiPSC) by application of standardized and antibiotic-free differentiation media with the aim to mimic human embryogenesis as closely as possible. For testing VX sensitivity, MN were initially exposed once to 400 µM, 600 µM, 800 µM, or 1000 µM VX and cultured for 5 days followed by analysis of changes in viability and neurite outgrowth as well as at the gene and protein level using µLC-ESI MS/HR MS, XTT, IncuCyte, qRT-PCR, and Western Blot. For the first time, VX was shown to trigger neuronal cell death and decline in neurite outgrowth in hiPSC-derived MN in a time- and concentration-dependent manner involving the activation of the intrinsic as well as the extrinsic pathway of apoptosis. Consistent with this, MN morphology and neurite network were altered time and concentration-dependently. Thus, MN represent a valuable tool for further investigation of the pathomechanism after VX exposure. These findings might set the course for the development of a promising human neuromuscular test model and patient-specific therapies in the future.

2.
Cell Stress Chaperones ; 28(6): 1013-1025, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38006565

RESUMO

The human muscle-type nicotinic acetylcholine receptor α12ß1δε (nAChR) is a complex transmembrane receptor needed for drug screening for disorders like congenital myasthenic syndromes and multiple pterygium syndrome. Until today, most models are still using the nAChR from Torpedo californica electric ray. A simple reproducible cellular system expressing functional human muscle-type nAChR is still missing. This study addressed this issue and further tested the hypothesis that different chaperones, both biological and chemical, and posttranslational modification supporting substances as well as hypothermic incubation are able to increase the nAChR yield. Therefore, Gibson cloning was used to generate transfer plasmids carrying the sequence of nAChR or chosen biological chaperones to support the nAChR folding in the cellular host. Viral transduction was used for stable integration of these transgenes in Chinese hamster ovary cells (CHO). Proteins were detected with Western blot, in-cell and on-cell Western, and the function of the receptor with voltage clamp analysis. We show that the internalization of nAChR into plasma membranes was sufficient for detection and function. Additional transgenic overexpression of biological chaperones did result in a reduced nAChR expression. Chemical chaperones, posttranslational modification supporting substances, and hypothermic conditions are well-suited supporting applications to increase the protein levels of different subunits. This study presents a stable and functional cell line that expresses human muscle-type nAChR and yields can be further increased using the chemical chaperone nicotine without affecting cell viability. The simplified access to this model system should enable numerous applications beyond drug development. Graphical abstract created with http://biorender.com.


Assuntos
Receptores Nicotínicos , Cricetinae , Animais , Humanos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Agonistas Nicotínicos , Células CHO , Cricetulus , Membrana Celular/metabolismo , Músculos/metabolismo
3.
Cells ; 12(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37830610

RESUMO

Sulfur mustard (SM) and its derivatives are potent genotoxic agents, which have been shown to trigger the activation of poly (ADP-ribose) polymerases (PARPs) and the depletion of their substrate, nicotinamide adenine dinucleotide (NAD+). NAD+ is an essential molecule involved in numerous cellular pathways, including genome integrity and DNA repair, and thus, NAD+ supplementation might be beneficial for mitigating mustard-induced (geno)toxicity. In this study, the role of NAD+ depletion and elevation in the genotoxic stress response to SM derivatives, i.e., the monofunctional agent 2-chloroethyl-ethyl sulfide (CEES) and the crosslinking agent mechlorethamine (HN2), was investigated with the use of NAD+ booster nicotinamide riboside (NR) and NAD+ synthesis inhibitor FK866. The effects were analyzed in immortalized human keratinocytes (HaCaT) or monocyte-like cell line THP-1. In HaCaT cells, NR supplementation, increased NAD+ levels, and elevated PAR response, however, did not affect ATP levels or DNA damage repair, nor did it attenuate long- and short-term cytotoxicities. On the other hand, the depletion of cellular NAD+ via FK866 sensitized HaCaT cells to genotoxic stress, particularly CEES exposure, whereas NR supplementation, by increasing cellular NAD+ levels, rescued the sensitizing FK866 effect. Intriguingly, in THP-1 cells, the NR-induced elevation of cellular NAD+ levels did attenuate toxicity of the mustard compounds, especially upon CEES exposure. Together, our results reveal that NAD+ is an important molecule in the pathomechanism of SM derivatives, exhibiting compound-specificity. Moreover, the cell line-dependent protective effects of NR are indicative of system-specificity of the application of this NAD+ booster.


Assuntos
Alquilantes , NAD , Humanos , NAD/metabolismo , Fatores de Proteção , Poli(ADP-Ribose) Polimerases/metabolismo , DNA
4.
Stem Cells Int ; 2022: 1320950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530489

RESUMO

Motor neurons (MNs) derived from human-induced pluripotent stem cells (hiPSC) hold great potential for the treatment of various motor neurodegenerative diseases as transplantations with a low-risk of rejection are made possible. There are many hiPSC differentiation protocols that pursue to imitate the multistep process of motor neurogenesis in vivo. However, these often apply viral vectors, feeder cells, or antibiotics to generate hiPSC and MNs, limiting their translational potential. In this study, a virus-, feeder-, and antibiotic-free method was used for reprogramming hiPSC, which were maintained in culture medium produced under clinical good manufacturing practice. Differentiation into MNs was performed with standardized, chemically defined, and antibiotic-free culture media. The identity of hiPSC, neuronal progenitors, and mature MNs was continuously verified by the detection of specific markers at the genetic and protein level via qRT-PCR, flow cytometry, Western Blot, and immunofluorescence. MNX1- and ChAT-positive motoneuronal progenitor cells were formed after neural induction via dual-SMAD inhibition and expansion. For maturation, an approach aiming to directly mature these progenitors was compared to an approach that included an additional differentiation step for further specification. Although both approaches generated mature MNs expressing characteristic postmitotic markers, the direct maturation approach appeared to be more efficient. These results provide new insights into the suitability of two standardized differentiation approaches for generating mature MNs, which might pave the way for future clinical applications.

5.
Arch Toxicol ; 96(11): 3053-3066, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35906424

RESUMO

Chronic wounds, skin blisters, and ulcers are the result of skin exposure to the alkylating agent sulfur mustard (SM). One potential pathomechanism is senescence, which causes permanent growth arrest with a pro-inflammatory environment and may be associated with a chronic wound healing disorder. SM is known to induce chronic senescence in human mesenchymal stem cells which are subsequently unable to fulfill their regenerative function in the wound healing process. As dermal fibroblasts are crucial for cutaneous wound healing by being responsible for granulation tissue formation and synthesis of the extracellular matrix, SM exposure might also impair their function in a similar way. This study, therefore, investigated the SM sensitivity of primary human dermal fibroblasts (HDF) by determining the dose-response curve. Non-lethal concentrations LC1 (3 µM) to LC25 (65 µM) were used to examine the induction of senescence. HDF were exposed once to 3 µM, 13 µM, 24 µM, 40 µM or 65 µM SM, and were then cultured for 31 days. Changes in morphology as well as at the genetic and protein level were investigated. For the first time, HDF were shown to undergo senescence in a time- and concentration-dependent manner after SM exposure. They developed a characteristic senescence phenotype and expressed various senescence markers. Proinflammatory cytokines and chemokines were significantly altered in SM-exposed HDF as part of a senescence-associated secretory phenotype. The senescent fibroblasts can thus be considered a contributor to the SM-induced chronic wound healing disorder and might serve as a new therapeutic target in the future.


Assuntos
Gás de Mostarda , Alquilantes , Senescência Celular , Citocinas , Fibroblastos , Humanos , Gás de Mostarda/toxicidade , Pele
6.
Arch Toxicol ; 95(2): 727-747, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33491125

RESUMO

Wound healing is a complex process, and disturbance of even a single mechanism can result in chronic ulcers developing after exposure to the alkylating agent sulfur mustard (SM). A possible contributor may be SM-induced chronic senescent mesenchymal stem cells (MSCs), unable to fulfil their regenerative role, by persisting over long time periods and creating a proinflammatory microenvironment. Here we show that senescence induction in human bone marrow derived MSCs was time- and concentration-dependent, and chronic senescence could be verified 3 weeks after exposure to between 10 and 40 µM SM. Morphological changes, reduced clonogenic and migration potential, longer scratch closure times, differences in senescence, motility and DNA damage response associated genes as well as increased levels of proinflammatory cytokines were revealed. Selective removal of these cells by senolytic drugs, in which ABT-263 showed initial potential in vitro, opens the possibility for an innovative treatment strategy for chronic wounds, but also tumors and age-related diseases.


Assuntos
Senescência Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Citocinas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Gás de Mostarda/toxicidade , Cicatrização/efeitos dos fármacos , Alquilantes/toxicidade , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Substâncias para a Guerra Química/toxicidade , Quimiocinas/genética , Citocinas/genética , Humanos , Peróxido de Hidrogênio/toxicidade , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pele/efeitos dos fármacos , Pele/lesões
7.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498964

RESUMO

Sulfur mustard (SM) is a chemical warfare agent that can damage DNA via alkylation and oxidative stress. Because of its genotoxicity, SM is cancerogenic and the progenitor of many chemotherapeutics. Previously, we developed an SM-resistant cell line via chronic exposure of the popular keratinocyte cell line HaCaT to increasing doses of SM over a period of 40 months. In this study, we compared the genomic landscape of the SM-resistant cell line HaCaT/SM to its sensitive parental line HaCaT in order to gain insights into genetic changes associated with continuous alkylation and oxidative stress. We established chromosome numbers by cytogenetics, analyzed DNA copy number changes by means of array Comparative Genomic Hybridization (array CGH), employed the genome-wide chromosome conformation capture technique Hi-C to detect chromosomal translocations, and derived mutational signatures by whole-genome sequencing. We observed that chronic SM exposure eliminated the initially prevailing hypotetraploid cell population in favor of a hyperdiploid one, which contrasts with previous observations that link polyploidization to increased tolerance and adaptability toward genotoxic stress. Furthermore, we observed an accumulation of chromosomal translocations, frequently flanked by DNA copy number changes, which indicates a high rate of DNA double-strand breaks and their misrepair. HaCaT/SM-specific single-nucleotide variants showed enrichment of C > A and T > A transversions and a lower rate of deaminated cytosines in the CpG dinucleotide context. Given the frequent use of HaCaT in toxicology, this study provides a valuable data source with respect to the original genotype of HaCaT and the mutational signatures associated with chronic alkylation and oxidative stress.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA , Queratinócitos/efeitos dos fármacos , Gás de Mostarda/toxicidade , Mutação , Radiação Ionizante , Alquilantes/farmacologia , Alquilantes/toxicidade , Linhagem Celular , Aberrações Cromossômicas/efeitos da radiação , Hibridização Genômica Comparativa , DNA/efeitos dos fármacos , DNA/metabolismo , DNA/efeitos da radiação , Adutos de DNA , Quebras de DNA de Cadeia Dupla , Humanos , Gás de Mostarda/farmacologia , Estresse Oxidativo
8.
Front Immunol ; 11: 606893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33658993

RESUMO

During inflammation, neutrophils are one of the first responding cells of innate immunity, contributing to a fast clearance of infection and return to homeostasis. However, excessive neutrophil infiltration accelerates unsolicited disproportionate inflammation for instance in autoimmune diseases such as rheumatoid arthritis. The transient-receptor-potential channel-kinase TRPM7 is an essential regulator of immune system homeostasis. Naïve murine T cells with genetic inactivation of the TRPM7 enzyme, due to a point mutation at the active site, are unable to differentiate into pro-inflammatory T cells, whereas regulatory T cells develop normally. Moreover, TRPM7 is vital for lipopolysaccharides (LPS)-induced activation of murine macrophages. Within this study, we show that the channel-kinase TRPM7 is functionally expressed in neutrophils and has an important impact on neutrophil recruitment during inflammation. We find that human neutrophils cannot transmigrate along a CXCL8 chemokine gradient or produce reactive oxygen species in response to gram-negative bacterial lipopolysaccharide LPS, if TRPM7 channel or kinase activity are blocked. Using a recently identified TRPM7 kinase inhibitor, TG100-115, as well as murine neutrophils with genetic ablation of the kinase activity, we confirm the importance of both TRPM7 channel and kinase function in murine neutrophil transmigration and unravel that TRPM7 kinase affects Akt1/mTOR signaling thereby regulating neutrophil transmigration and effector function. Hence, TRPM7 represents an interesting potential target to treat unwanted excessive neutrophil invasion.


Assuntos
Infiltração de Neutrófilos , Neutrófilos/enzimologia , Peritonite/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/induzido quimicamente , Peritonite/genética , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/genética , Fator de Necrose Tumoral alfa
9.
Toxicol Lett ; 320: 80-86, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31809884

RESUMO

In vitro cell culture experiments are highly important techniques to accelerate drug discovery, conduct safety testing and reduce the need for animal studies. Therefore, automatization may help to enhance the technical precision, reduce external (including operator's) influence on the data and thus improve reliability. Prior to application in scientific studies, validation of automated systems is absolutely necessary. In this study we present the validation of two combined automated pipetting systems to conduct toxicity studies in HaCaT cells consisting of cell seeding, noxious agent exposure and several assays to assess cell survival, apoptosis and interleukin production. After initial validation of pipetting accuracy, we compared homogeneity after automated seeding to plates seeded by expert laboratory technicians. Moreover, automated dispensing of a potentially unstable noxious agent was analyzed in terms of speed and consistency. We found a 2 % technical imprecision for the cell survival assay and 4.5-6 % for the other assays, bioluminescent and ELISA techniques. Thus, we could demonstrate the excellent technical precision of our assays. In a final step, we found that intraday variations, though acceptable, were much larger than technical variations and had to assume an intraday biological variability between different wells of the same experimental group.


Assuntos
Automação Laboratorial/normas , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/toxicidade , Técnicas de Cultura de Tecidos/normas , Testes de Toxicidade/normas , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Teste de Materiais , Necrose
10.
Toxicol Lett ; 314: 172-180, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31404593

RESUMO

Vesicants cause a multitude of cutaneous reactions like erythema, blisters and ulcerations. After exposure to sulfur mustard (SM) and related compounds, patients present dermal symptoms typically known for chemicals categorized as skin sensitizer (e.g. hypersensitivity and flare-up phenomena). However, although some case reports led to the assumption that SM and other alkylating compounds represent sensitizers, a comprehensive investigation of SM-triggered immunological responses has not been conducted so far. Based on a well-structured system of in chemico and in vitro test methods, the Organization for Economic Co-operation and Development (OECD) established procedures to categorize agents on their skin sensitizing abilities. In this study, the skin sensitizing potential of SM and three related alkylating agents (AAs) was assessed following the OECD test guidelines. Besides SM, investigated AAs were chlorambucil (CHL), nitrogen mustard (HN3) and 2-chloroethyl ethyl sulfide (CEES). The methods are described in detail in the EURL ECVAM DataBase service on ALternative Methods to animal experimentation (DB-ALM). In accordance to OECD recommendations, skin sensitization is a pathophysiological process starting with a molecular initiating step and ending with the in vivo outcome of an allergic contact dermatitis. This concept is called adverse outcome pathway (AOP). An AOP links an adverse outcome to various key events which can be assayed by established in chemico and in vitro test methods. Positive outcome in two out of three key events indicates that the chemical can be categorized as a skin sensitizer. In this study, key event 1 "haptenation" (covalent modification of epidermal proteins), key event 2 "activation of epidermal keratinocytes" and key event 3 "activation of dendritic cells" were investigated. Covalent modification of epidermal proteins measured by using the DPRA-assay provided distinct positive results for all tested substances. Same outcome was seen in the KeratinoSens assay, investigating the activation of epidermal keratinocytes. The h-CLAT assay performed to determine the activation of dendritic cells provided positive results for SM and CEES but not for CHL and HN3. Altogether, following OECD requirements, our results suggest the classification of all investigated substances as skin sensitizers. Finally, a tentative AOP for SM-induced skin sensitization is suggested.


Assuntos
Substâncias para a Guerra Química/toxicidade , Irritantes/toxicidade , Gás de Mostarda/toxicidade , Testes de Irritação da Pele/normas , Pele/efeitos dos fármacos , Biomarcadores/metabolismo , Substâncias para a Guerra Química/classificação , Clorambucila/classificação , Clorambucila/toxicidade , Guias como Assunto , Humanos , Irritantes/classificação , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Células de Langerhans/efeitos dos fármacos , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Mecloretamina/classificação , Mecloretamina/toxicidade , Gás de Mostarda/análogos & derivados , Gás de Mostarda/classificação , Medição de Risco , Pele/imunologia , Pele/metabolismo
11.
Toxicol Lett ; 293: 16-20, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29551593

RESUMO

BACKGROUND: The cell line HaCaT/SM was developed as a sulfur mustard (SM) resistant cell line from the human keratinocyte cell line HaCaT. This cell line was established to learn more about the effect of SM and possible therapeutic approaches to counteract the cytotoxic effects of SM. The aim of this study was to clarify whether the SM-resistant cell line HaCaT/SM exhibit also resistance to other alkylating agents or cytotoxic drugs with different mechanism of action. MATERIAL AND METHOD: The chemosensitivity of SM-resistant human keratinocyte cell line HaCaT/SM and the original cell line HaCaT were tested using the XTT assay. Nine cytotoxic drugs from five different substance groups were investigated. RESULTS: HaCaT/SM showed a significant increase in resistance against all tested drugs. From the substance class of the alkylating agents, HaCaT/SM showed the strongest resistance increase against chlorambucil (1.7 fold increase). Whereas over all substances strongest increase was observed against cisplatin (5.1 fold increase). DISCUSSION: The highest resistance was observed for cisplatin. The SM resistant cells revealed changes in the miRNA profile as described before. The resistance to cisplatin is also connected to a specific miRNA profile. Interestingly, changes of miRNA-203 and miRNA-21 levels were found in HaCaT/SM as well as in cisplatin resistant cells. It is therefore conceivable that the same resistance pathways are involved for both substances.


Assuntos
Substâncias para a Guerra Química/toxicidade , Queratinócitos/efeitos dos fármacos , Gás de Mostarda/toxicidade , Alquilantes/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citostáticos/toxicidade , Relação Dose-Resposta a Droga , Resistência a Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , MicroRNAs/metabolismo , Necrose
12.
Toxicol Lett ; 293: 105-111, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29426001

RESUMO

INTRODUCTION: The chemical warfare agent sulfur mustard (SM), also known as mustard gas, was first used in World War I. Although prohibited by the chemical warfare convention, significant amounts of SM still exist and have still to be regarded as a threat for military personnel and civilians. After SM exposure, the most prominent clinical symptom is the development of extensive non-healing skin wounds. This chronic wound healing dysfunction is persisting over long time. Mesenchymal stem cells (MSC) are known to play an important role in wound healing. Moreover, it is also known that patients with chronic wound healing diseases have compromised mesenchymal stem cell functionality. Based on these observations and the known relationship between wound healing dysfunction and MSC function we investigated the impact of sulfur mustard on human MSC. MATERIAL & METHODS: Mesenchymal stem cells (MSC) were isolated from femoral heads of healthy donors. They were cultured for less than four passages. MSC were exposed towards different sulfur mustard concentrations. After exposure we analyzed the secretome and the migration capacity. The migration capacity under influence of SM was analyzed after treatment with various cytokines. RESULTS: SM exposure (even at very low concentrations) showed negative effects on the migration capability. Many cytokines that are necessary for MSC migration were secreted in a reduced manner. The reduced migratory capacity can be compensated in part by the addition of cytokines. Here especially IL-8 (e and m) and IL-6 significantly compensated the SM induced migration reduction. DISCUSSION: The effect of sulfur mustard on MSC might play an important role in the persistence of long-term adverse effects; here the reduced migration could particularly be important. The compensation of the SM-induced migration reduction by addition of cytokines could possibly solve this problem. Moreover, our current results will help to understand the relationship between alkylating agents and MSC and thus will also give guidance in the future perspective for the therapeutic use of MSC in patients suffering from sulfur mustard induced chronic skin wounds.


Assuntos
Substâncias para a Guerra Química/toxicidade , Citocinas/fisiologia , Mobilização de Células-Tronco Hematopoéticas , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Gás de Mostarda/toxicidade , Idoso , Idoso de 80 Anos ou mais , Movimento Celular , Citocinas/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade , Cicatrização/efeitos dos fármacos
13.
Toxicol Lett ; 293: 98-104, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28818580

RESUMO

Chronic wound healing disorders that occur as a result of a sulfur mustard (SM) exposure present a particular challenge. These chronic wounds are similar to other chronic wounds. In the past, it has been shown that mesenchymal stem cells (MSC) play an important role in the healing of chronic wounds. An important property to support wound healing is their ability to migrate. However, we were able to show that SM leads to a reduction in MSC migration even at low concentrations. Currently, exposed MSCs are still able to differentiate. Further alterations are not known. The current investigation therefore focused onto the question how SM affects MSC. MATERIAL & METHODS: The effect of SM on MSC was investigated. Here, the alkylation of DNA was considered, and DNA adducts were quantified over a period of 48h. The modification of the nuclei under the influence of SM was analyzed as well as proliferation of the cells by immunohistochemical staining with Ki-67 and quantification. For the quantification of the apoptosis rate, antibodies against cleaved Caspase-3, 8, and apoptosis inducing factor (AIF) were used. The senescence analysis was performed after histological staining against ß-galactosidase. Quantifications were carried out by using the TissueQuest System and the software TissueFAX. RESULTS: SM exposure of MSC results in a dose dependent formation of nuclear DNA adducts. 4h after exposure the cells display a decreasing concentration of DNA adducts. This process is accompanied by a change of nuclei shape but without an increase of apoptosis induction. In parallel the number of cells undergoing senescence increases as a function of the SM concentration. DISCUSSION: SM exposure of MSC leads to adduct formation on chromosomal DNA. These DNA adducts can be reduced without MSC are undergoing apoptosis. This indicates an active DNA damage response (DDR) pathway in combination with the formation of persistent nuclear DNA damage foci. This process is accompanied by a reduced capability of proliferation and a transition into the senescent state.


Assuntos
Substâncias para a Guerra Química/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Gás de Mostarda/toxicidade , Idoso , Idoso de 80 Anos ou mais , Alquilação , Apoptose/efeitos dos fármacos , Fator de Indução de Apoptose/farmacologia , Caspases/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , Adutos de DNA , Feminino , Humanos , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , beta-Galactosidase/metabolismo
14.
Toxicol Lett ; 293: 38-44, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28823541

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are responsible for post-transcriptional control of protein expression. Numerous miRNAs have been identified to be responsible for the resistance of tumor cells to cytostatic drugs. Possibly, the same miRNAs also play a role in the sulfur mustard (SM)-resistance of the keratinocyte cell line HaCaT/SM as alkylating cytostatics exhibit similar cytotoxic effects as SM. METHODS: Basal expression levels of 1920 miRNAs in total were analyzed in HaCaT/SM compared to the origin human keratinocyte cell line HaCaT. The effect for selected miRNAs on cell survival was analyzed using antagomirs for ectopic miRNA level decrease or miRNA mimics for increase. Cell survival was calculated as SM dose-dependent-curves. RESULTS: Out of 1920 miRNAs analyzed, 49 were significantly up- and 29 were significantly downregulated in HaCaT/SM when compared to HaCaT controls. Out of these, 36 could be grouped in miRNA families. Most of the 15 miRNA family members showed either a common increase or decrease. Only the members of miR-10, miR-154, miR-430 and miR-548 family showed an inconsistent picture. The ectopic increase of miR-181 in HaCaT/SM had a positive effect on cell survival in the presence of SM. CONCLUSION: In summary, the extensive differences in miRNA expression pattern between these cell lines indicate that specific miRNAs may play a role in the resistance mechanism against sulfur mustard. The miR-125b-2 and miR-181b alone are not responsible for the resistance development against SM, but an ectopic increase of miR-181 even enhances the SM resistance of HaCaT/SM. Improving the resistance in normal keratinocytes by treatment with either both miRNAs together or a different combination might be used as an initial step in development of an innovative new drug or prophylactic agent against SM.


Assuntos
Substâncias para a Guerra Química/toxicidade , MicroRNAs/biossíntese , MicroRNAs/efeitos dos fármacos , Gás de Mostarda/toxicidade , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Humanos , Queratinócitos/efeitos dos fármacos
15.
Toxicol Lett ; 293: 51-61, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183814

RESUMO

BACKGROUND: Sulfur mustard (SM) is a potent blistering chemical warfare agent, which was first used in 1917. Despite the Chemical Weapons Convention, a use was recently reported in Syria in 2015. This emphasizes the importance to develop countermeasures against chemical warfare agents. Despite intensive research, there is still no antidote or prophylaxis available against SM. METHODS: The newly developed SM-resistant keratinocyte cell line HaCaT/SM was used to identify new target structures for drug development, particularly the adaptations in protective measures against oxidative stress. For this purpose, glutathione (GSH) and NAD(P)H levels, the effect of glutathione S-transferase (GST) inhibition as well as activation and expression of Nrf2, GST, glutamate cysteine ligase (GCL) and glutathione-disulfide reductase (GSR) as well as multi-drug resistance (MDR) proteins 1, 3 and 5 were investigated. RESULTS: The HaCaT/SM cells showed not only a better survival after treatment with SM or cytostatic drugs, but also hydrogen peroxide (H2O2). They exhibit more GSH even after SM treatment. Nrf2 levels were significantly lower. Inhibition of GST led to significantly decreased, activation to slightly higher IC50 values after SM treatment and a lower expression of GST was observed. The cells also expressed less GCLC and GSR. Expression of MDR1, MDR3 and MDR5 was higher under control conditions, but less stimulated by SM treatment. An increased NADP+/NADPH ratio as well as higher NAD+ levels were shown. CONCLUSION: In summary, an improved response of the resistant cell line to oxidative stress was observed. The underlying mechanisms are elevated GSH levels as well as lower expression of Nrf2 and its targets GCLC and GST as well as GSR and MDR1, MDR3 and MDR5. GST is an especially interesting target because its inhibition already induced a significant SM sensitivity. SM resistance also caused redox equivalent level differences. Taken together, these findings provide further insight into the mechanism of SM resistance and may open a window for novel therapeutic targets in SM therapy.


Assuntos
Antioxidantes/metabolismo , Substâncias para a Guerra Química/farmacologia , Glutationa/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Gás de Mostarda/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Humanos , NAD/metabolismo , NADP/metabolismo , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos
16.
Toxicol Lett ; 244: 49-55, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26456177

RESUMO

BACKGROUND: The cell line HaCaT/SM was derived from the human keratinocyte cell line HaCaT. HaCaT/SM cells display a high resistance against sulfur mustard (SM). Intention of the presented study was to determine the cellular and molecular differences between HaCaT/SM and HaCaT so as to evaluate which changes might be responsible for being resistant against SM. METHODS: Both cell lines HaCaT and HaCaT/SM were analyzed with respect to their cell growth, nuclei perimeter, clonogenicity and secretion profile. Moreover DNA alkylation pattern under presence of SM was investigated. RESULTS: In comparison to HaCaT, the HaCaT/SM showed a significant smaller nuclei perimeter. For DNA alkylation a significant difference was observed over time. The clonogenicity of HaCaT/SM was increased to 150%. The secretion profile of these cells demonstrated a strong increase of ANG, PDGF-AA, TIMP1, TIMP2, and a decrease of AREG, CCL5, CXC1, CXC2/3, CXCL6, CXCL7, CXCL8, CXCL10, MIF, Trappin-1. CONCLUSION: The sulfur mustard (SM) resistant cell line HaCaT/SM demonstrates a wide range of significant differences to their origin cell line HaCaT. These differences might be responsible to provide resistance against SM and might also be useful to establish treatment concepts for humans after SM exposure.


Assuntos
Substâncias para a Guerra Química/toxicidade , Resistência a Medicamentos , Queratinócitos/efeitos dos fármacos , Gás de Mostarda/toxicidade , Biomarcadores/metabolismo , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Adutos de DNA/metabolismo , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Queratinócitos/metabolismo , Queratinócitos/patologia , Fenótipo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...